51 resultados para Microcystis sp

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total synthesis of phomactin G (3), which is a central intermediate in the biosynthesis of phomactin A (5) in Phoma sp. is described. The synthesis is based on a Cr(II)/Ni(II) macrocyclisation from the aldehyde vinyl iodide 9, leading to 16, followed by sequential conversion of 16 into the -epoxide 21 and the ketone 25 which, on deprotection, led to (±)-phomactin G. Phomactin G (3) shares an interesting structural homology with phomactin D (2), the most potent PAF-antagonist metabolite in Phoma sp. It is most likely converted into phomactin A (5), by initial allylic oxidation to the transient -alcohol phomactin structure 4, known as Sch 49028, followed by spontaneous pyran ring formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphonopyruvate hydrolase, a novel bacterial carbon-phosphorus bond cleavage enzyme, was purified to homogeneity by a series of chromatographic steps from cell extracts of a newly isolated environmental strain of Variovorax sp. Pal2. The enzyme was inducible in the presence of phosphonoalanine or phosphonopyruvate; unusually, its expression was independent of the phosphate status of the cell. The native enzyme had a molecular mass of 63 kDa with a subunit mass of 31.2 kDa. Activity of purified phosphonopyruvate hydrolase was Co2+-dependent and showed a pH optimum of 6.7–7.0. The enzyme had a Km of 0.53 mM for its sole substrate, phosphonopyruvate, and was inhibited by the analogues phosphonoformic acid, 3-phosphonopropionic acid, and hydroxymethylphosphonic acid. The nucleotide sequence of the phosphonopyruvate hydrolase structural gene indicated that it is a member of the phosphoenolpyruvate phosphomutase/isocitrate lyase superfamily with 41% identity at the amino acid level to the carbon-to-phosphorus bond-forming enzyme phosphoenolpyruvate phosphomutase from Tetrahymena pyriformis. Thus its apparently ancient evolutionary origins differ from those of each of the two carbon-phosphorus hydrolases that have been reported previously; phosphonoacetaldehyde hydrolase is a member of the haloacetate dehalogenase family, whereas phosphonoacetate hydrolase belongs to the alkaline phosphatase superfamily of zinc-dependent hydrolases. Phosphonopyruvate hydrolase is likely to be of considerable significance in global phosphorus cycling, because phosphonopyruvate is known to be a key intermediate in the formation of all naturally occurring compounds that contain the carbon-phosphorus bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphonopyruvate (P-pyr) hydrolase (PPH), a member of the phosphoenolpyruvate (PEP) mutase/isocitrate lyase (PEPM/ICL) superfamily, hydrolyzes P-pyr and shares the highest sequence identity and functional similarity with PEPM. Recombinant PPH from Variovorax sp. Pal2 was expressed in Escherichia coli and purified to homogeneity. Analytical gel filtration indicated that the protein exists in solution predominantly as a tetramer. The PPH pH rate profile indicates maximal activity over a broad pH range.The steady-state kinetic constants determined for a rapid equilibrium ordered kinetic mechanism with Mg+2 binding first (Kd =140 ± 40 M), are kcat = 105 ± 2 s-1 and P-pyr Km = 5 ± 1 M. PEP (slow substrate kcat = 2 × 10-4 s-1), oxalate, and sulfopyruvate are competitive inhibitors with Ki values of 2.0 ± 0.1 mM, 17 ± 1 M, and 210 ± 10 M, respectively. Three PPH crystal structures have been determined, that of a ligand-free enzyme, the enzyme bound to Mg2+ and oxalate (inhibitor), and the enzyme bound to Mg2+ and P-pyr (substrate). The complex with the inhibitor was obtained by cocrystallization, whereas that with the substrate was obtained by briefly soaking crystals of the ligand-free enzyme with P-pyr prior to flash cooling. The PPH structure resembles that of the other members of the PEPM/ICL superfamily and is most similar to the functionally related enzyme, PEPM. Each monomer of the dimer of dimers exhibits an (/)8 barrel fold with the eighth helix swapped between two molecules of the dimer. Both P-pyr and oxalate are anchored to the active site by Mg2+. The loop capping the active site is disordered in all three structures, in contrast to PEPM, where the equivalent loop adopts an open or disordered conformation in the unbound state but sequesters the inhibitor from solvent in the bound state. Crystal packing may have favored the open conformation of PPH even when the enzyme was cocrystallized with the oxalate inhibitor. Structure alignment of PPH with other superfamily members revealed two pairs of invariant or conservatively replaced residues that anchor the flexible gating loop. The proposed PPH catalytic mechanism is analogous to that of PEPM but includes activation of a water nucleophile with the loop Thr118 residue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-component naphthalene dioxygenase (NDO) enzyme system carries out the first step in the aerobic degradation of naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene by Rhodococcus sp. strain NCIMB 12038. The terminal oxygenase component (naphthalene 1,2-dioxygenase) that catalyzes this reaction belongs to the aromatic ring hydroxylating dioxygenase family and has been crystallized. These enzymes utilize a mononuclear nonheme iron centre to catalyze the addition of dioxygen to their respective substrates. In this reaction, two electrons, two protons and a dioxygen molecule are consumed. The Rhodococcus enzyme has only 33 and 29% sequence identity to the corresponding alpha- and beta-subunits of the NDO system of Pseudomonas putida NCIMB 9816-4, for which the tertiary structure has been reported. In order to determine the three-dimensional structure of the Rhodococcus NDO, diffraction-quality crystals have been prepared by the hanging-drop method. The crystals belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 87.5, b = 144, c = 185.6 Angstrom, alpha = beta = gamma = 90degrees, and diffract to 2.3 Angstrom resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphonopyruvate hydrolase (PalA) found in Variovorax sp., Pal2, is a novel carbon-phosphorus bond cleavage enzyme, which is expressed even in the presence of high levels of phosphate, thus permitting phosphonopyruvate to be used as the sole carbon and energy source. Analysis of the regions adjacent to the palA gene revealed the presence of the five structural genes that constitute the 2-amino-3-phosphonopropionic acid (phosphonoalanine)-degradative operon. Reverse transcriptase-PCR (RT-PCR) experiments demonstrated that all five genes in the operon are transcribed as a single mRNA and that their transcription is induced by phosphonoalanine or phosphonopyruvate. Transcriptional fusions of the regulatory region of the phosphonoalanine degradative operon with the gfp gene were constructed. Expression analysis indicated that the presence of a LysR-type regulator (encoded by the palR gene) is essential for the transcription of the structural genes of the operon. Similar gene clusters were found in the sequenced genomes of six bacterial species from the Alpha-, Beta- and Gammaproteobacteria, and analysis of metagenomic libraries revealed that sequences related to palA are widely spread in the marine environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodococcus sp. NCIMB112038 can utilize naphthalene as its sole carbon and energy source. The gene encoding cis-naphthalene dihydrodiol dehydrogenase (narB) of this strain has been cloned and sequenced. Expression of NCIMB12038 cis-naphthalene dihydrodiol dehydrogenase was demonstrated in Escherichia coli cells. narB encodes a putative protein of 271 amino acids and shares 39% amino acid identity with the cis-naphthalene dihydrodiol dehydrogenase from Pseudomonas putida G7. Comparison of NarB with some putative cis-dihydrodiol dehydrogenases from Rhodococcus species revealed significant differences between these proteins. NarB together with two other proteins forms a new group of cis-dihydrodiol dehydrogenases. (C) 2000 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.